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Prompted by a recent article of Chakravarty, we reexamine the O(N) vector 
model with twisted boundary conditions in d dimensions in the various 
frameworks of the e = d -  2 expansion, the ~ = 4 - d expansion, and the large-N 
expansion. These continuum models describe the physics below the critical 
temperature Tc and near T c of a lattice O(N) spin model. We determine the 
effect of the twisting on finite-size scaling functions, for various geometries. 

KEY WORDS: Finite-size scaling; nonlinear a-model; ~-expansion; large-N 
expansion. 

1. I N T R O D U C T I O N  

In  a recent  ar t ic le  C h a k r a v a r t y  ~1) s tudied the  effect of  twisted b o u n d a r y  
cond i t ions  on the spin stiffness cons tan t  of  an  N-vec tor  mode l  in two 
dimens ions .  In  this  art icle we discuss the effect of  the twist ing on  finite 
s ize-scal ing funct ions,  for var ious  geometries,  a n d  for all d imens ions  d, 
2~<d~<4. 

The  ca lcu la t ion  can be pe r fo rmed  within va r ious  schemes. In  Sect ion 2 
we first s tudy  the O ( N )  vector  m o d e l  from the po in t  of view of  the  low- 
t e m p e r a t u r e  expans ion .  In  the con t inuum,  large-dis tance ,  l imit this  leads  to 
the  non l inea r  a -mode l .  I f  we wan t  to be able  to  character ize  the  whole 
r ange  of  ra t ios  L/C, L being the size of the sys tem and  r the co r re la t ion  
length,  we need to in te rpo la te  be tween the cri t ical  fixed point  a n d  the zero-  
t e m p e r a t u r e  IR  fixed point .  This  can  be achieved on ly  near  two d imens ions  
because  Tc is then small. In  h igher  d imensions  on ly  the s i tua t ion  L >> r 
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which, according to RG arguments, is governed by the zero-temperature 
IR fixed point, can be described. 

In Section 3 the large-N limit is discussed. Two types of boundary con- 
ditions have then to be distinguished: macroscopic boundary conditions, 
where the average magnetization is fixed, which are easy to handle, and 
microscopic boundary conditions, where the microscopic spin variables are 
given, which lead to much more complicated calculations. 

The same problem appears in the framework of the ~b 4 field theory, 
which provides a natural framework to discuss the N-vector model near 
four dimensions, as is shown in Section 4. We prove, however, that 
both types of boundary conditions yield identical results for any fixed 
temperature below Tc. 

2, THE NONLINEAR o-MODEL 

Let us first consider the action of the nonlinear tr-model (2) (for 
notations and methods see, e.g., ref. 3) 

Ad-2 
S(ck) = 7 -  ; ddx [3u~b(x)] 2 (1) 

with a spin of length 1: 

(~2(x) = 1 (2) 

A is a mass scale, for instance, the UV cutoff which regularizes the theory, 
introduced to make t dimensionless. This model is known to describe the 
N-vector model in the low-temperature, long-distance limit. We discuss 
here the model in the following geometry: one dimension is distinguished 

which has a size L and corresponds to twisted boundary conditions 

r162 r162 r162 (3) 

In the other d -  1 dimensions of size L• we assume periodic boundary con- 
ditions. We consider here only the situations L:_ >> L (lamellar geometry) 
or L• (hypercubic geometry). The ease L>>L. has been already 
extensively studied and requires a different technique. (4) 

With the boundary conditions (3) all momenta are quantized and the 
eigenmodes p2 of the operator - ~  are 

k mZTz2 /2r~k\2 p2(m' ) =-"~ ' -  + ~-~'-! ) ' k 6 7Yd- 1 (4) 

and m is a positive integer. To avoid potential IR problems due to a 
degeneracy of the classical minimum we impose 101 < re. 
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Renormalization Group. In the case of a geometry characterized by 
two finite-size parameters L, L_,, the free energy per unit volume F defined 
for convenience by 

1 fZ(O)'] 
F= LLd_ ~ In \Z---~J 

is an RG invariant. Thus it satisfies, as a consequence of the renormaliza- 
tion group equations, 

F= L-af(L/r L/L• (5) 

with 

~(t)=A_lti/(a_2)explfo (fl(t,) 1 " ( d - - 2 ) t " ) d t ' ]  (6) 

Below the critical temperature the length ~ is not a correlation length, since 
the phase is massless, but a length which characterizes the crossover scale 
between the low-temperature IR behavior, governed by free Goldstone 
modes, and the critical behavior governed by the UV fixed point at Tc (the 
large-momentum behavior of the corresponding field theory). As an RG 
invariant this length satisfies the RG equation 

A-gs+ 4=0 

from which (6) follows. 

Remark. For an Ising-like system (or more generally a system with 
only discrete symmetries) F characterizes the surface tension between two 
different phases. For large L it vanishes as 1/L with a coefficient propor- 
tional to the surface tension. The RG equation (5) is consistent with this 
behavior provided the surface tension vanishes at Tc like ( T c - T )  v(a-1), 
which is Widom's scaling law. 

In a model with continuous symmetry, due to the Goldstone modes, 
F vanishes like 1/L 2 instead, and the coefficient of 1/L 2 (the equivalent of 
the surface tension for continuous symmetries) is constrained by the RG 
equation (5) to vanish like (To -T )  ,(a-z), Josephson's scaling law. (5~ 

The fl-function in d=  2 + s dimensions at two-loop order is 

fl(t) = et -- Ns(N-- 2) t 2 -- N ~ ( N -  2) t 3 4- O(t  4, 8t 3) 

2~ d/2 1 (7) 
Nd = F(d/2)(2n) a -  2re + O ( d -  2) 
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We shall see that with the boundary conditions (3) and for d >  2 and L/L_L 
finite the function f(x,  L/L• is regular near the critical temperature x = 0 
(10l < re). For x ~ oo the behavior of the function f(x, L/L.) is governed 
by the IR fixed point t = 0 and thus is given by perturbation theory. 

It is useful to introduce a size-dependent coupling constant defined by 

tit(2) 
=fl(t()~)), t ( 1 ) = t  (8) 

d ln  2 

For  2 small, t(2) approaches the IR fixed point at t = 0. At one-loop order 
for e small 

t(2) = t2~[1 -- ( N - 2 )  Nat In 2] (9) 

and thus, choosing 2 = 1/(AL), 

tL - t[ 1/(AL)] = [t/(AL) ~] [1 + (N-- 2) Nat ln(AL)] (10) 

2.1. The Cylindrical Geometry at One-Loop Order 

For convenience we call space dimensions the d - 1  dimensions of 
size L . ,  and "time" the dimension of size L. We mainly discuss the two 
situations L ~ L• and L = L• We do not study the case L >> L• which 
requires a separate analysis. In the time direction we impose twisted 
boundary conditions [conditions (3)]: 

~b(z = O, x) = ~b 1 , ~b(z = L, x) = ~b2, x e R  d-x (11) 
\ 

in which ~bl and ~b2 are two constant vectors such that 

~bl .~b2 =cos  0, 0 ~ < 0 < n  (12) 

To calculate the one-loop corrections we extend the method explained in 
ref. 3. The corresponding partition function is given by 

Z(L• L, 0 ) =  (~bzl e -t-~/Iq~) (13) 

By projecting Z(L• L, O) over the hyperspherical polynomials P~(cos 0) it 
is possible to calculate the eigenvalues of the Hamiltonian H. Let us now 
choose a frame such that 

~bl = [1, O; 0], ~b2 = [cos O, sin O; O] (14) 
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We parametrize then the field ~b(r, x) by 

(cos(Or/L) Ol(Z, x) - sin(Or~L) a2(z, x) 
I 

0(% x)= ~ sin(O'c/L ) a l(T , x)+ cos(O'c/L ) a2(z, x) (15) 
I 
L~(~, x) 

in which the field n(z, x) has here only N - 2  components. With this 
parametrization the boundary conditions (11) take the simple form 

a l = l ,  G2=0 , n = 0  for 3 = 0  and z = L  (16) 

and the solution to the classical field equation satisfying (16) is then al = 1, 
a2 = 0, n = 0. Finally the transformation (15) is a rotation. Therefore the 
three fields a l ,  a2, n satisfy the constraint 

0"2 -}- 0"2 -t- n2  = 1 (17) 

and the integration measure in the functional integral is left invariant. 
The action S(~b) in the new fields reads 

Ad-Z _ IO 2 
�9 S ( f f l , O 2 , ~ ) = T j d . g d d - 1 X  ~--~ (0"1 -~- 0"2) --~- a2 -[- e22 --~ ~ 2 

+ Z(~2al-ala2)+(ai~l)2+(aio-2)2+(a,~)2 (la) 

Ffomark. It is easy to see that the partition function is a regular even 
function of 0 near 0 = 0. If we expand up to order 0 2, we find the average 
of the quantity 

A a-2- 1 A2d-4[f 12 -~ fdTdd- lx -~(a2+a2)+ 2-~- ~ dzdd- lx(e2al-6 ,a2)  

(19) 
Due to the second term the coefficient of 04 is not the average of the square 
of the coefficient of 02 . However, at one-loop order the second term does 
not contribute and thus the fluctuations of the quantity (19) can indeed be 
inferred from the coefficient of 04. The 02 coefficient has been called the 
spin stiffness or the helicity modulus. (6) Previous studies have proposed a 
vanishing near T c of the helicity modulus as I T - T e l  ~(a-2),(7) which is the 
so-called Josephson relation. 

One-Loop Calculation. To calculate the effects of small fluctuations 
around the classical minimum al = 1, a2 = 0, n = 0, we eliminate the field 
a~ using Eq. (17): 

a 1 = (1 -- o'~ - n2) 1/2 (20) 
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and expand the action in powers of 0" 2 and n. The quadratic part of the 
action $2(0"2, n) needed for the one-loop calculation is then 

A d - 2  02Aa-2L~-~ + f d~da-lx 
$2(0"2, ~ ) =  2t-'---"~- - - ~  

x - -s (21) 

At this order the integration over 0"2 gives a factor independent of 0 which 
can be absorbed in the normalization of the functional integral. The 
integral over n gives a determinant to the power ( N - 2 ) / 2 .  Hence the result 
at this order is 

Z(L_L, L, O) 02 Aa_2L~_ 1 
--ln Z(L_~, L, O) - 2tL 

1 ) ] 2 2 2 2 --1 - c~-c~i) + ~ ( N - 2 )  t r ln  ~ - 5 - ~ - ~ i  ( -  

(22) 

Taking into account the boundary conditions (16), we have to sum over 
quantized momenta and thus obtain from (4) 

- l n  Z(L• L, O) 
Z(L. ,  L, O) 

=02L~-~Aa-2 N-2"-" ~ L2pZ(m,k)O2 ] + ~ 2  In 1 +O(t) (23) 

We then use the representation 

ln(p2 _ OZL-2) _ In p2 = F + o~ d s [e _sp2 _ e 02/L2) "] 

Jo S 

;o +o~ ds (1 eS~ -sp2 
S 

The sum over m and k can be expressed in terms of the function A(s) 
(which is a Jacobi theta function): 

+oo 
A(s)= ~ e -"2 (24) 

n~ --oo 

From the Poisson formula one proves that A(s) satisfies 

t//'C\ 1/2 ( - ~ )  
(2,t 
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One then finds 

- l n  

589 

Z(L• L, O) 
Z(L• L, O) 

.-i N--2~+~ds -e'O'/L2)[ (z2s~ 1 = 0 2 L ~ - ' A d - : +  - - ( 1  A - 1  
2tL ~ Jo s \ L 2 J 

xAa-I(4n2s'~ (26) 
) 

The expression is IR finite but UV divergent (at small s) for d~> 2. In order 
to regularize the theory, we first go to d <  2, renormalize the temperature, 
and continue back to d>~ 2. More specifically we note that 

(1 -- eS~ A(rc2s) - 1] A a- l(4rcZsL 2/L 2 ) 

sZo -- O2(L-L/L )a- 1 NdF(d/2 ) e-Ssl -d/2 

and thus 

Z(L., L, O) 
nz-  iL, O) 

=ozLd-~Ad_2(1  ( N - 2 )  N:c ) 
q 2 sin(red/2) (AL)2-d 

N -  2 c+~ d-~ [ (1-eS:)[A(rc2s)- l ] 
+---T-Jo 

A d- 1 (4zc2sLZ'~ :L \d-  1 a/2] 
X 

3 

2 .2 .  D i m e n s i o n  d = 2 + e  

(27) 

We now perform a double expansion in t and d - 2  which is valid in 
the whole range of temperature from 0 to Tc and thus for an arbitrary 
value of the ratio L/~. Renormalizing the temperature at a scale A = l/L, 
i.e., defining the renormalized temperature 

we obtain 

1 1 N - 2  
_ _  2 1 - - -  

t L t 2~Ze 

o2 I ( L )  
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with 

4 Jo ds 

{1 - - e  s~ I L A [ 4 ~ z 2 s L 2 \ l e - ~ }  
x [A(=2s) - 1 ] 02 (28) 

s )J  + 

This is in agreement with finite-size scaling provided we express tL as a 
function of L/~. This follows immediately from the renormalization group 
since 

, 

At one-loop order this leads to 

- - ~ - - . 2  I- 

tL tc 

Therefore for ~/L large, tL flows as expected to the UV fixed point to, and 
thus F vanishes at tc as L -d as expected from finite-size scaling. For large 
L, fixed ~, tL vanishes as (~/L) ~ and we recover the 1/L 2 behavior of the 
free energy which is characteristic of spin waves below to. 

Dimension d >  2. In dimension 2 < d <  4 we can still use the low- 
temperature expansion in the regime in which L >> ~, since zero temperature 
is an IR fixed point. We now define a renormalized temperature 

1 1 (N-2)NaZC+O(t) 
tL t 2 sin(Tzd/2) 

From the RG equations we find that tL vanishes in that limit as (~/L) a- 2. 
Therefore we end up at first order with 

with 
_ N - 2 ~  ~ {1-e  s~ [ L {4z~2sL2~] a- 

~o- 4 Oo ds s [A(n2s) - 1 ]  z-EA \ - - ~ - ~  ] j  

+ 0 2 N a I ' ( ~  e-~s ~-e/2} 

This result is consistent with Josephon's relation. (5) 

(29) 

(30) 
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Dimension Two. Expression (27) also determines the form of F at 
d =  2. The renormalization group tells us that the free energy per unit 
volume has the form 

F= L-2f(r4~, L/r,~) 

For d=  2 we may now reach from the loop expansion the opposite limit 
>> L since the origin is now a UV fixed point; we have 

f=  02/(2tL) + q~(O, L/L• + O(tL) (31) 

where ~o is given by (30) and where tz. has the expansion 

1 N - - 2 1 n ( ~ ) + l l n l n ( ~ ) + O ( 1 )  
tL 2= 

Note that it is justified to take this two-loop expression for tz. although we 
only computed F at one-loop order. Indeed we are neglecting 1/In({/L) but 
not ln ln({/L)/ln(~/L). Let us also note that the correction terms in 
In In(~/L) have important practical consequences. It is in principle feasible 
to compute the helicity modulus in a Monte Carlo simulation. As a 
function of In L, one can hope to see the leading-order slope ( N -  2)/2rc. (s) 
However, we expect the logarithmic behavior to be quite difficult to 
observe due to the very slow decay of subleading terms. 

2.3. The Lamellar Geometry 

Let us now take the limit L• oo. The expressions simplify; the 
function (p defined by Eq. (30), valid for d >  2, becomes 

N - 2 f ?  { ~  q~= 4 ds [A(TtZs)-l](1---~-~ (a-')/z 
\4~csJ 

+ , ,2 ,  

For d =  2 + e the scaling function (27) becomes 

with 

0 2 
f=2-~L+O(0) (33) 

_ N - ' 2 [  "~ .J" l - e *  2 e -~} 
q~- 4 Oo ds ~(4rc)l/2s3/2[A(zr2s)--l]+02"~s (34) 
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2.4. The Hypercubic Geometry 

This geometry should be the most convenient for numerical studies. 
The function ~0 relevant for 2 + e dimension [Eq. (28)] is now given by the 
following expression: 

N-2~~ Jo { 1-e'~ z~zse-S} ~o= ds [A(Tr2s)-l]A(4zr2s)+02~--- (35) 
S 

3. THE LARGE-N LIMIT 

Let us solve now the o--model in the large-N limit. Using the linear 
formalism, we rewrite the partition function: 

= ; [&b(x) d2(x)] exp[ - S(~b, 2)] (36) Z 

with 

S(~, 2)=~TJ ddx [(au~)2 + 2(~2- 1)] (37) 

It is convenient for our problem to integrate only over N - 2  components 
of ~. Calling ~ the remaining two components, we obtain 

Z=f [do(x) d2(x)] exp[ -Sodg,  2)] (38) 

with 

Sen(~,2)=~f {(8,~;)2+[g2(x)-l]2(x)}d dx 

+ 1 ( N -  2) tr ln[--A + 2(x)] (39) 

The large-N limit is taken at TN fixed. The saddle point equations, in the 
infinite-volume limit, are 

2a = 0 (40) 

(N__U2) T ~A ddp. (41) 
o -2=1 (2r0 ~ J p~+2 



O(N) Vec to r  Model with Twisted Boundary Condit ions 593 

At low temperature a is different from zero and thus ),, which is the square 
of the mass of the n-field, vanishes. Equation (41) gives the spontaneous 
magnetization: 

( N -  2) ddp (42) 
a 2  = 1 (2rc)a Tf A p2 

At To, a vanishes: 

1 N- 2 ;A ddp 
(43 ) 

T~ (2n)a J p2 

Therefore Eq. (42) can be rewritten: 

a2= 1 - -  T I T  C (44) 

Above Tc, a instead vanishes and 2, which is now the square of the 
common mass of the n- and a-field, is given for 2 < d < 4 by 

Z 1 =2d/2_ 1N--2(2n)a f pZ(p2daP.+. I) Jr- O(~.A d-4) (45) 

3.1. Finite-Size Calculations 

The action now takes the form 

0 0 S,~ , ) . )=~f&da- lx  ~-'7 ~= +"2  + 2 Z (e2al - 61a2) 

"t- ((~it~) 2 Of- 2(t~ 2 -  1)] + 1 (N-- 2)tr In[-- A + 2(x)] (46) 

The main problem is now that two types of boundary conditions, which 
are hardly distinguishable in the low-temperature expansion, are possible. 
We can look for constant saddle points in 2, a, and the calculations are 
then simple. However, this corresponds to imposing the direction of the 
magnetization, rather than the values of the microscopic spin variables. We 
can instead impose the values of the microscopic variables, but then the 
saddle point fields are z dependent and the saddle point equations become 
integral equations. A guess is that for T fixed below T c the difference 
between both procedures is negligible while it is essential near To. We 
examine the simple case first. 

822/70/3-4-6 
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then 
M a c r o s c o p i c  B o u n d a r y  Cond i t ions .  The saddle point equations are 

(N--2)Txp [m2~ 2 (2rck'~2+ ] 
1 - o ' 2 =  L----~a_ ~- L--p-+t,-Z-2/y ;. - '  (48) 

In the second equation a cutoff is of course implied. 
In the low-temperature phase we thus find 

2 = -02/L 2 (49) 

Note that the free energy depends only on the value of 2. The equation (48) 
for a, however, even at leading order, contains an important information. 
Because of the condition that the lhs is smaller than 1, Eq. (49) is only 
valid up to T(O) < T c. We have 

1 - - - -  a = (N-- 2) ds e~~ - 1 ] A d- 1 
re 

(4rc2sL2"~ ( L j . )  a-1 
x \----L-~, } - 2 - -  (4n!)a/2 } 

The free energy for d>  2 is then 

with q~(0) given by Eq. (30). 
The saddle point equation in the case of microscopic boundary 

conditions is much more complicated because it involves the calculation of 
time-dependent operators and has not been studied. 

4. THE (tp2) z FIELD T H E O R Y  

We consider now the action suited for a study near four dimensions, 

1 1 g(#t2)2 ] (50) 

At leading order we need only the action for the two a-components. Again 
the simple calculation corresponds to macroscopic boundary conditions. 
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Macroscopic Boundary Conditions. The mean field free energy in 
the low-temperature phase becomes 

F 02 z 1 = ~-~ 0- + ~ r0- 2 + ~ g 0  -4 - -  value at 0 = 0 

with the equation 

02 1 
~--~+ r + ~ g0-2 = 0 

This last equation implies the condition 

02 ~ - r L  2 ~ 0 <~ L/r 

At the saddle point, 
02 3 0 4 

F =  - 3 r  - -  gL 2 2 gL 4 

an expression which is consistent with the low-temperature and large-N 
calculation. 

Microscopic Boundary Conditions. The calculations are lengthy 
and delicate even at the simple mean field level, and we shall not go 
beyond this tree level. Then N - 2  components of the field ~b are set to zero 
and we keep the two components 0-1 and a2, parametrized as 

0" 1 = 0 COS ~0, 0" 2 = 6 s i n  ~o 

The boundary conditions are q~(0)=0, ~0(L)= 0 for the angle. For  o- we 
impose on the boundary a magnetization of order A (d-2)/2, in which A is 
an inverse length which is large compared to (r) m (r vanishes linearly 
at Tc). Therefore we will later take the limit in which 0-(0) and 0-(L) go 
to infinity. The mean field action reduces to 

-1 dr + r0- + g0-4 (5a) 

and we minimize it with respect to a and ~o. This is a simple mechanical 
motion in a plane, and with the two constants of motion, the angular 
momentum b and the energy E, the trajectories 0-(z) are given by 

I L d"c 
bjo a(r)  z 0 (52) 
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and 

S do-' p(~,)=~ (53) 

in which p(a)  is the velocity defined as 

p(cr) = (bZ/a 2 + rcr 2 + ga4/12 - 2E) 1/2 (54) 

The motion a(z) takes place between a large initial value, which will be 
taken later as infinite, bounces on the potential wall at a value amin(b ) at 
which the velocity p(a)  vanishes, and returns to infinity. Therefore the two 
constants of motion E and b are determined by the equations 

2 t  ~ __a~ = L  (55) 
Join ~p(o') 

do 
2b .,m~n a2p(o.---- ~ = 0 (56) 

The constants of motion E and b both depend on 0. When 0 =0 ,  
b vanishes, E takes the value E0, and the velocity p(a)  becomes 

po(a) = (ra 2 + ga4/12 - 2E0)m 

The free energy per unit volume is finally given by 

2 e ( o ) _ e  ~ (57) 
2 da [ p ( a ) - p o ( a ) ] - L  "~'min(O) 

For small 0, F vanishes as 02 and we neglect from now on all higher 
powers of 0. After a tedious and long calculation, we end up with 

Ob F=~Z+ 0(0') (58) 

with 
e~ da f ~  da 

2b J.~.(o) a2"~o(a) = 0 and 2 3.mm(O ) po(a) = L 

These complete elliptic integrals are easy to analyze in the various limits 
of interest, but first a simple rescaling will reveal the expected finite-size 
scaling property of F: 

a ~ a/L,  b ~ b/L 3, Eo =gco/24L 4 

po(a) = (g/12) In L - 2 q ( a )  
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with 

and 

q(~) - (~4 + pa2 _ (D)1/2 (59) 

p = 12rL2/g (60) 

which is proportional to (L/~) 2 in mean field theory. The expression for the 
free energy is thus 

FL 4 = .O-b 2 + 0(04) (61) 

with the conditions 

l ( g ~ ~'~ dx ] - '  

and 

(62) 

,63, 1 = 2 (x 4 "t" p x  2 - -  (-0) 1/2 

in which a is the zero of q(a) given by a = [ - p / 2  + (p2/4+ oo2)uz] 1/2. 
Equations (62) and (63) define co and b as functions of p, i.e., of L/~, 

and Eq. (61) shows that indeed F =  L-af(L/~, O) (with d = 4  for mean field 
theory), as expected from the previous scaling theory. It is now easy to 
study the resulting properties of F in the various limits: 

(i) L,> ~ (for T >  To), p goes to plus infinity. One finds that e) 
vanishes exponentially, and the final result is 

FL 4 = 48(L/~) 3 O2/ge -LIe + O(04) (64) 

in which r = (r) - m .  As expected, above the critical temperature the 
dependence in the twist angle 0 vanishes exponentially. 

(ii) ~ > L (i.e., T near To), p goes to zero, and we find 

FL4= [3Fs(I/4)/(32erc3)] 02+ 0(04) (65) 

Since L is finite, we did expect, as exhibited on (65), that the function 
f (L/ r  0) is regular in the  limit in which L/~ goes to zero. 

(iii) L > ~  (for T <  T~), p goes to minus infinity, and co is negative. 
The integrals in Eqs. (62) and (63) behave both logarithmically for large p, 
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and one finds that co=p2/4 - 16p2(exp-L/ l ) ,  with now 4=  ( - 2 r )  -m.  
Neglecting the exponentially small corrections, we obtain finally 

FL 4 = -3rLZO2/g + 0(04, exp - L/ i )  (66) 

in agreement with the mean field calculation with macroscopic boundary 
conditions. Below the critical temperature we recover the characteristic 
1/L 2 behavior of the free energy due to spin waves. 

5. CONCLUDING REMARKS 

Finite-size scaling functions for twisted boundary conditions have been 
computed for an arbitrary ratio L/r in a 2 + e expansion and for L ~> r for 
any dimension between two and four, owing to the property that the 
size-dependent effective temperature tt. goes to zero in this limit. 

Similarly, 4 -  e and 1/N expansions have been applied to this problem. 
Calculations are simple at fixed temperature below Tc because microscopic 
boundary conditions, i.e., fixed spin on the boundary, and macroscopic 
boundary conditions, i.e., fixed magnetization, are equivalent. However, 
near Tc these boundary conditions lead to different physics, and 
microscopic boundary conditions are not easy to handle. In all these 
calculations we see no evidence for an alleged breakdown of the nonlinear 

o" model. Indeed if this phenomenon exists, it cannot manifest itself in a 
perturbative calculation. 
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